CO2 Laser Produced Tin Plasma Light Source as the Solution for EUV Lithography

نویسنده

  • Akira Endo
چکیده

High average power EUV light source has been the “most critical” issue in the research and development of the EUV lithography system in one decade. EUV LLC and International Sematech significantly stimulated the global research community to work seriously to advance plasma technology in achieving the goal of the EUV source, required by the semiconductor industry. It is instructive to look into the EUV lithography source workshop held in October 2001 in Matsue, Japan. MEDEA+ project consortium “EUV source” had started already in June 2001 in Europe including many public and private research organizations (Stamm, 2002). EUV source workshop was organized in Japan several times by ASET in 2000-2001 to evaluate the technical possibility to develop the required EUV source (Okazaki, 2001), which was then succeeded by EUVA project in 2002. ASML and NIKON talked in the Matsue workshop as the required EUV power was more than 80W with faster than 5 kHz repetition rate, assuming the resist sensitivity as 2mJ/cm2. The requirement came from 80 wafers/hour throughput. The wavelength was confirmed at 13.5nm to optimize to the peak reflectivity of Mo/Si coated mirrors. This caused a serious concern on the scaling of the once established method based on Nd:YAG laser irradiated xenon gas plasma, in which the peak conversion efficiency was at 11nm. Nd:YAG laser irradiation of a gas puff target was a typical laboratory method in laser applications like higher harmonics generation, short wavelength generation, fast ion generation and so on (e.g., Fiedorowicz, 1999). TRW had been working closely with EUV LLC from 1997 to develop the first generation EUV light source, based on Nd:YAG laser irradiated xenon gas puff plasma. The obtained conversion efficiency was around 0.2%, with laser power of 500W by a single beam (Ballard, 2002). It was suggested to increase the density of xenon at longer distance from xenon nozzle to improve the conversion efficiency, together with higher laser power of better beam quality. It seemed still possible to work following the proposed direction, but experiments showed practical limitations around this approach. The author discusses in the following sections on each limitation in the history of the EUV source development, and describes each obtained solution, overcoming the limitation to realize the required source performance finally. The major work was conducted during the project of “Extreme Ultraviolet Lithography System Development Association (EUVA)” in Japan from 2002 to 2009.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis, simulation, and experimental studies of YAG and CO2 laser- produced plasma for EUV lithography sources

Efficient laser systems are essential for the realization of high volume manufacturing in extreme ultraviolet lithography (EUVL). Solid-state Nd:YAG lasers usually have lower efficiency and source suppliers are alternatively investigating the use of high power CO2 laser systems. However, CO2 laser-produced plasmas (LPP) have specific characteristics and features that should be taken into accoun...

متن کامل

Enhancements of extreme ultraviolet emission using prepulsed Sn laser-produced plasmas for advanced lithography applications

Laser-produced plasmas (LPP) from Sn targets are seriously considered to be the light source for extreme ultraviolet (EUV) next generation lithography, and optimization of such a source will lead to improved efficiency and reduced cost of ownership of the entire lithography system. We investigated the role of reheating a prepulsed plasma and its effect on EUV conversion efficiency (CE). A 6 ns,...

متن کامل

Wavelength dependence of prepulse laser beams on EUV emission from CO2 reheated Sn plasma

Extreme ultraviolet (EUV) emission from laser-produced plasmas (LPP) centered at 13.5 nm is considered a leading candidate for the light source in future lithography systems. Tin is currently the best material for generating this EUV emission since it emits strongly within the 13.5 nm region due to its various ionic states (SnSn). Highly efficient and low-debris LPPs are a pre-requisite for the...

متن کامل

Comparative study on EUV and debris emission from CO2 and Nd: YAG laser-produced tin plasmas

The emission characteristics of debris from laser-produced tin plasma were investigated for an extreme ultraviolet lithography (EUV) light source. The ions and droplets emitted from tin plasma produced by a CO2 laser or an Nd: YAG laser were detected with Faraday cups and quartz crystal micro-balance (QCM) detectors, respectively. A higher ion kinetic energy and a lower droplet emission were ob...

متن کامل

The effect of laser wavelength on emission and particle dynamics of Sn plasma

We investigated the effects of laser wavelength on the atomic, ionic, and radiative emission from laser-produced tin plasmas. For generating plasmas, planar tin targets were excited using either high intensity neodymium-doped yttrium aluminum garnet Nd:YAG, 1.06 m or carbon dioxide CO2, 10.6 m laser pulses; both are considered to be potential excitation lasers for an extreme ultraviolet EUV lit...

متن کامل

Combined effects of pre-pulsing and target geometry on efficient EUV production from laser produced plasma experiments and modeling

Laser produced plasmas (LPP) is currently a promising source of an efficient extreme ultraviolet (EUV) photon source production for advanced lithography. Optimum laser pulse parameters with adjusted wavelength, energy, and duration for simple planar or spherical tin target can provide 2-3% conversion efficiency (CE) in laboratory experiments. These values are also in good agreement with modelin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012